Heat transfer from an air-cooled rotating disk

Author:

Abstract

This paper describes a combined theoretical and experimental investigation into the heat transfer from a disk rotating close to a stator with a radial outflow of coolant. Experimental results are obtained from a 762 mm diameter disk, rotating up to 4000 rev/min at axial clearances from 2 to 230 mm from a stator of the same diameter, with coolant flow rates up to 0.7 kg/s. Mean Nusselt numbers are presented for the free disk, the disk rotating close to an unshrouded stator with no coolant outflow, the disk rotating close to a shrouded and unshrouded stator with coolant outflow, and for the unshrouded stator itself. Numerical solutions of the turbulent boundary layer equations are in satisfactory agreement with the experimentally determined mean Nusselt numbers for the air-cooled disk over a wide range of conditions. At large ratios of mass flow rate/rotational speed the mean Nusselt numbers for the air-cooled disk are independent of rotation, and both the numerical solutions and experimental results become asymptotic to an approximate solution of the boundary layer equations.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3