Extended Dynamic Stiffness Model for Analyzing Flexure-Hinge Mechanisms With Lumped Compliance

Author:

Ling Mingxiang12,Zhang Xianmin3,Cao Junyi4

Affiliation:

1. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China;

2. School of Mechanical and Automotive Engineering, South China University of Technology, No. 28, Mianshan Road, Mianyang, Guangzhou 510800, China

3. School of Mechanical and Automotive Engineering, South China University of Technology, No. 381, Wushan Road, Guangzhou 510800, China

4. School of Mechanical Engineering, Xi’an Jiaotong University, No. 64, Xianning Road, Xi’an 710049, China

Abstract

Abstract This paper introduces an extended dynamic stiffness modeling approach for concurrent kinetostatic and dynamic analyses of planar flexure-hinge mechanisms with lumped compliance. First, two novel dynamic stiffness matrices are derived for two types of flexure hinge connected to rigid bodies by shifting the end node to the mass center of rigid bodies considering the geometric effect of rigid motion. A straightforward modeling procedure is then proposed for the whole compliant mechanism based on d'Alembert's principle by selecting the displacements at both the mass center of rigid bodies and the rest end nodes of flexure hinges as the hybrid state variables. With the presented method, the statics and dynamics of flexure-hinge mechanisms with irregular-shaped rigid bodies in complex serial-parallel configurations can be analyzed in a concise form. The presented method is compared with other theoretical models, finite element simulation, and experiments for three case studies of a bridge-type compliant mechanism, a leveraged XY precision positioning stage, and a Scott–Russell-mechanism-based XYθ flexure manipulator. The results reveal the easy operation and well prediction accuracy of the presented method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3