Shell Stability Related to Pattern Formation in Plants

Author:

Steele C. R.1

Affiliation:

1. Division of Mechanics and Computation, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305

Abstract

In the last few years we have studied the possible relation of instability of a shell surface to the patterns that develop in plants. In the present work, it is found that there is a linear relation between the epidermis (tunica) thickness and the wavelength between new leaves (primordia). This relation is near the buckling wavelength calculated from the geometry of the tunica and interior (corpus) cells. The main focus is on the changes in pattern that occur. (1) The wild variety of snapdragon has primordia that bulge out of plane, while a mutant has in-plane folding. A crude mechanical model is an elastic ring constrained at the outer diameter and subjected to uniform growth, represented by thermal expansion. It is found that the difference in the in-plane and out-of-plane buckling can be accounted for by a modest change in one geometric parameter. (2) The second change is that in the unicellular alga Acetabularia. The geometry consists of a standard cylindrical pressure vessel with a nearly hemispherical end cap. At a point in time, the end cap flattens and a uniform circumferential array of new shoots forms. A mechanical model for the growth is proposed, in which the wall consists of a viscous material with a locally linear relation between mean stress and creep (growth) rate. The result is that the elliptical shape for stable growth can be regulated by one parameter of viscosity. The results reinforce the suggestion that the stability of the surface is instrumental in the generation of plant patterns, and that substantial change in pattern can be controlled by the modification of few mechanical parameters. [S0021-8936(00)03002-6]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3