Study on influence of parameters of buckling behavior in soft mechanical metamaterials

Author:

Lyu Muyun1ORCID,Zhang Fan2,Cheng Baozhu13ORCID,Dai Lu4,Xia Zhaowang1ORCID

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

2. Research and Development Center, China Academy of Launch Vehicle Technology, Beijing 100076, P. R. China

3. Laboratory of Ocean Acoustics and Sensing, School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, P. R. China

4. Science and Technology on Thermal Energy and Power Laboratory, Wuhan 2nd Ship Design and Research Institute, Wuhan 430000, P. R. China

Abstract

Mechanical metamaterials are valued for their diverse properties and potential applications. Due to the instability and large deformability of soft mechanical metamaterials (SMMs), geometric reorganization will occur and lead to some unusual properties. It is possible to change the properties of materials by varying the parameters. Conventional SMMs contain a periodic distribution of holes with the same size and shape, which can be changed to a lesser extent. Periodic dispersion of regular through-hole patterns of various sizes or shapes into elastomers, resulting in metamaterials with more mechanical functionality and deformation scenarios. In this paper, we investigated the influence of parameters on the buckling mechanical behavior of SMMs and the buckling mechanical behavior of structures with multiple sizes and geometric shapes. The parameters studied include geometric parameters (pore shape, porosity and area ratio) and physical parameters (Poisson’s ratio and compression mode). Simulation of the buckling behavior of SMMs uses the finite element method. The finite element software ABAQUS is used, taking into account the almost incompressible characteristics of materials, the triangular quadratic plane strain hybrid element is selected (CPE6H). Numerical calculation gives the following results: Area ratio, pore shape and compression mode have obvious effects on buckling behavior, but Poisson’s ratio has little effect; the influence of parameters on the buckling critical strains varied for SMMs with various pore shapes; very different buckling behaviors will result from swapping out the pattern of holes with the same size or shape for holes with two different sizes or shapes; the expression of buckling behavior is also varied when the mix of hole shapes is modified. These findings demonstrate that the design parameters may be used to achieve the desired buckling behaviors. This is a new method that can be used to control the deformation of structures; modify the properties of the SMMs without changing stiffness; simplify the structures without significantly changing the material properties. The design path of mechanical metamaterials is increased.

Funder

the Natural Science Foundation of Jiangsu Province

the Science and Technology on Thermal Energy and Power Laboratory Open Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3