Affiliation:
1. Department of Chemical Engineering, Universidad de los Andes, Carrera 1 #18-12, Bogota 111711, Colombia
2. McDougall School of Petroleum Engineering, University of Tulsa, 800 S. Tucker Dr., Tulsa, OK 74104
Abstract
Abstract
Low liquid loading flow occurs very commonly in the transport of any kind of wet gas, such as in the oil and gas, the food, and the pharmaceutical industries. However, most studies that analyze this type of flow do not cover actual industry fluids and operating conditions. This study focused then on modeling this type of flow in medium-sized (6-in [DN 150] and 10-in [DN 250]) pipes, using computational fluid dynamics (CFD) simulations. When comparing with experimental data from the University of Tulsa, the differences observed between experimental and CFD data for the liquid holdup and the pressure drop seemed to fall within acceptable error, around 20%. Additionally, different pipe sections from a Colombian gas pipeline were simulated with a natural gas-condensate mixture to analyze the effect of pipe inclination and operation variables on liquid holdup, in real industry conditions. It was noticed that downward pipe inclinations favored smooth stratified flow and decreased liquid holdup in an almost linear fashion, while upward inclinations generated unsteady wavy flows, or even a possible annular flow, and increased liquid holdup and liquid entrainment into the gas phase.
Subject
Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献