Optimization of the Taper/Twist Stacking Axis Location of NREL VI Wind Turbine Rotor Blade Using Neural Networks Based on Computational Fluid Dynamics Analyses

Author:

Kaya Mustafa1,Elfarra Munir2

Affiliation:

1. Aeronautical Engineering Department, Ankara Yidirim Beyazit University, Havacilik ve Uzay Bilimleri Fakultesi, Ulus, Ankara 06050, Turkey e-mail:

2. Ankara Yidirim Beyazit University, Havacilik ve Uzay Bilimleri Fakultesi, Ulus, Ankara 06050, Turkey e-mail:

Abstract

The stacking axis locations for twist and taper distributions along the span of a wind turbine blade are optimized to maximize the rotor torque and/or to minimize the thrust. A neural networks (NN)-based model is trained for the torque and thrust values calculated using a computational fluid dynamics (CFD) solver. Once the model is obtained, constrained and unconstrained optimization is conducted. The constraints are the torque or the thrust values of the baseline turbine blade. The baseline blade is selected as the wind turbine blade used in the National Renewable Energy Laboratory (NREL) Phase VI rotor model. The Reynolds averaged Navier–Stokes (RANS) computations are done using the FINE/turbo flow solver developed by NUMECA International. The k-epsilon turbulence model is used to calculate the eddy viscosity. It is observed that achieving the same torque value as the baseline value is possible with about 5% less thrust. Similarly, the torque is increased by about 4.5% while maintaining the baseline thrust value.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference37 articles.

1. Aerodynamic Wind-Turbine Rotor Design Using Surrogate Modeling and Three-Dimensional Viscous-Inviscid Interaction Technique;Renewable Energy,2016

2. Aerodynamic Loads Calculation and Analysis for Large Scale Wind Turbine Based on Combining BEM Modified Theory With Dynamic Stall Model;Renewable Energy,2011

3. Application of a Prescribed Wake Aerodynamic Prediction Scheme to Horizontal Axis Wind Turbines in Axial Flow;Wind Eng.,1995

4. Ashuri, T., Zhang, T., Qian, D., and Rotea, M., 2016, “Uncertainty Quantification of the Levelized Cost of Energy for the 20 MW Research Wind Turbine Model,” AIAA Paper. No. 2016-1998.10.2514/6.2016-1998

5. Castillo Capponi, P., Ashuri, T., Van Bussel, G. J. W., and Kallesoe, B., 2011, “A Non-Linear Upscaling Approach for Wind Turbines Blades Based on Stresses,” European Wind Energy Conference, Brussels, Belgium, Mar. 14–17, pp. 1–8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3