Optimal Design of a Cold Spray Nozzle for Inner Wall Coating Fabrication by Combining CFD Simulation and Neural Networks

Author:

Meng Yuxian,Saito Hiroki,Bernard ChrystelleORCID,Ichikawa Yuji,Ogawa Kazuhiro

Abstract

AbstractRecently, the low-pressure cold spray (LPCS) technique has been used to fabricate superhydrophobic polymer coatings on metallic substrates, suggesting a significant potential in engineering applications. This study aims to design a spiral LPCS nozzle to coat the pipe’s inner wall with superhydrophobic polymer. The design goal is to achieve the maximum particle velocity in a confined (limited) space, assuming that the powder can enter the feeding tube through the Venturi effect. Achieving these two goals simultaneously using only computational fluid dynamics (CFD) simulation is challenging. Therefore, the CFD simulation was combined with the neural network (NN) method to design the new spiral nozzle. During training, the effects of the NN models and algorithms were investigated. The results showed that the feedforwardnet model combined with the trainbr or trainlm algorithm (from MATLAB 2016b software), presented a minimal error for particle velocity or gas flux prediction, respectively. The trained NN correlates the nozzle parameters (i.e., mean coil diameter, spring lift angle, and expansion ratio) and its performances (i.e., particle velocity and gas flux in the powder feeding tube). As a result, the optimal spiral nozzle was determined based on the design goal of maximum particle velocity and suitable gas flux in the powder feeding tube. Furthermore, the effect of each nozzle parameter on the particle velocity and gas flux in the powder feeding tube was analyzed. The cold spray experiment confirmed that the designed spiral nozzle could fabricate Perfluoroalkoxy alkane (PFA) coatings.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3