Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer

Author:

Goswami Prakash1,Mondal Pranab Kumar23,Datta Anubhab4,Chakraborty Suman25

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

2. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India;

3. Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India

4. Department of Mechanical Engineering, Jadavpur University, Kolkata, West Bengal 700032, India

5. Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India e-mail:

Abstract

We investigate the entropy generation characteristics of a non-Newtonian fluid in a narrow fluidic channel under electrokinetic forcing, taking the effect of conjugate heat transfer into the analysis. We use power-law model to describe the non-Newtonian fluid rheology, in an effort to capture the essential thermohydrodynamics. We solve the conjugate heat transfer problem in an analytical formalism using the thermal boundary conditions of third kind at the outer surface of the walls. We bring out the alteration in the entropy generation behavior as attributable to the rheology-driven alteration in heat transfer, coupled with nonlinear interactions between viscous dissipation and Joule heating originating from electroosmotic effects. We unveil optimum values of different parameters, including both the geometric as well as thermophysical parameters, which lead to the minimization of the entropy generation rate in the system. We believe that the inferences obtained from the present study may bear far ranging consequences in the design of various cooling and heat removal devices/systems, for potential use in microscale thermal management.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3