Graph Neural Network-Based Design Decision Support for Shared Mobility Systems

Author:

Xiao Yinshuang1,Ahmed Faez2,Sha Zhenghui1

Affiliation:

1. The University of Texas at Austin Walker Department of Mechanical Engineering, , Austin, TX 78712-1591

2. Massachusetts Institute of Technology Department of Mechanical Engineering, , Cambridge, MA 02139

Abstract

Abstract Emerging shared mobility systems are gaining popularity due to their significant economic and environmental benefits. In this paper, we present a network-based approach for predicting travel demand between stations (e.g., whether two stations have sufficient trips to form a strong connection) in shared mobility systems to support system design decisions. In particular, we answer the research question of whether local network information (e.g., the network neighboring station’s features of a station and its surrounding points of interest (POI), such as banks, schools, etc.) would influence the formation of a strong connection or not. If so, to what extent do such factors play a role? To answer this question, we propose using graph neural networks (GNNs), in which the concept of network embedding can capture and quantify the effect of local network structures. We compare the results with a regular artificial neural network (ANN) model that is agnostic to neighborhood information. This study is demonstrated using a real-world bike sharing system, the Divvy Bike in Chicago. We observe that the GNN prediction gains up to 8% higher performance than the ANN model. Our findings show that local network information is vital in the structure of a sharing mobility network, and the results generalize even when the network structure and density change significantly. With the GNN model, we show how it supports two crucial design decisions in bike sharing systems, i.e., where new stations should be added and how much capacity a station should have.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3