A Single-Fidelity Surrogate Modeling Method Based on Nonlinearity Integrated Multi-Fidelity Surrogate

Author:

Li Kunpeng1,He Xiwang1,Lv Liye2,Zhu Jiaxiang3,Hao Guangbo3,Li Haiyang4,Song Xueguan1

Affiliation:

1. Dalian University of Technology School of Mechanical Engineering, , No. 2, Linggong Road, Ganjingzi District, Dalian 116024 , China

2. Zhejiang Sci-Tech University School of Mechanical Engineering, , No. 928, No. 2 Street, Xiasha Higher Education Park, Hangzhou 310000 , China

3. University College Cork School of Engineering and Architecture-Electrical and Electronic Engineering, , Cork T12 K8AF , Ireland

4. Dalian University of Technology School of Automotive Engineering, , No. 2, Linggong Road, Ganjingzi District, Dalian 116024 , China

Abstract

Abstract Surrogate model provides a promising way to reasonably approximate complex underlying relationships between system parameters. However, the expensive modeling cost, especially in large problem sizes, hinders its applications in practical problems. To overcome this issue, with the advantages of the multi-fidelity surrogate (MFS) model, this paper proposes a single-fidelity surrogate model with a hierarchical structure, named nonlinearity integrated correlation mapping surrogate (NI-CMS) model. The NI-CMS model first establishes the low-fidelity model to capture the underlying landscape of the true function, and then, based on the idea of MFS model, the established low-fidelity model is corrected by minimizing the mean square error to ensure prediction accuracy. Especially, a novel MFS model (named NI-MFS), is constructed to enhance the stability of the proposed NI-CMS model. More specifically, a nonlinear scaling term, which assumes the linear combination of the projected low-fidelity predictions in a high-dimensional space can reach the high-fidelity level, is introduced to assist the traditional scaling term. The performances of the proposed model are evaluated through a series of numerical test functions. In addition, a surrogate-based digital twin of an XY compliant parallel manipulator is used to validate the practical performance of the proposed model. The results show that compared with the existing models, the NI-CMS model provides a higher performance under the condition of a small sample set, illustrating the promising potential of this surrogate modeling technique.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3