Multiscale Computational Model Predicts Mouse Skin Kinematics Under Tensile Loading

Author:

Witt Nathan J.1,Woessner Alan E.2,Quinn Kyle P.2,Sander Edward A.3

Affiliation:

1. Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242

2. Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701

3. Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, 5629 Seamans Center, Iowa City, IA 52242; Department of Orthopedics and Rehabilitation, Carver College of Medicine, University of Iowa, Iowa City, IA 52242

Abstract

Abstract Skin is a complex tissue whose biomechanical properties are generally understood in terms of an incompressible material whose microstructure undergoes affine deformations. A growing number of experiments, however, have demonstrated that skin has a high Poisson's ratio, substantially decreases in volume during uniaxial tensile loading, and demonstrates collagen fiber kinematics that are not affine with local deformation. In order to better understand the mechanical basis for these properties, we constructed multiscale mechanical models (MSM) of mouse skin based on microstructural multiphoton microscopy imaging of the dermal microstructure acquired during mechanical testing. Three models that spanned the cases of highly aligned, moderately aligned, and nearly random fiber networks were examined and compared to the data acquired from uniaxially stretched skin. Our results demonstrate that MSMs consisting of networks of matched fiber organization can predict the biomechanical behavior of mouse skin, including the large decrease in tissue volume and nonaffine fiber kinematics observed under uniaxial tension.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference72 articles.

1. Anatomy, Histology and Immunohistochemistry of Normal Human Skin;Eur. J. Dermatol.,2002

2. Anatomy, Skin (Integument), Epidermis,2020

3. The Mechanobiology of Aging;Annu. Rev. Biomed. Eng.,2015

4. The Materials Science of Skin: Analysis, Characterization, and Modeling;Prog. Mater. Sci.,2020

5. Fast-Acquisition Quantitative Polarized Light Imaging for Mechanical Testing of Collagenous Tissues,2019

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3