Simulation of Constrained Mechanical Systems — Part I: An Equation of Motion

Author:

Braun David J.1,Goldfarb Michael2

Affiliation:

1. School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

2. Department of Mechanical Engineering, Vanderbilt University, VU Station B 351592, Nashville, TN 37235,

Abstract

This paper presents an equation of motion for numerical simulation of constrained mechanical systems with holonomic and nonholonomic constraints. In order to avoid the error accumulation typically experienced in such simulations, the standard equation of motion is enhanced with embedded force and impulse terms which perform continuous constraint and energy correction along the numerical solution. To avoid interference between the kinematic constraint correction and the energy correction terms, both are derived by taking the geometry of the constrained dynamics rigorously into account. In this light, enforcement of the (ideal) holonomic and nonholonomic kinematic constraints are performed using ideal forces and impulses, while the energy conservation law is considered as a nonideal nonlinear nonholonomic constraint on the simulated motion, and as such it is enforced with nonideal forces. As derived, the equation can be directly discretized and integrated with an explicit ODE solver avoiding the need for expensive implicit integration and iterative constraint stabilization. Application of the proposed equation is demonstrated on a representative example. A more elaborate discussion of practical implementation is presented in Part II of this work.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference55 articles.

1. Differential-Algebraic Equation Index Transformations;Gear;SIAM J. Sci. Stat. Comput.

2. Über ein neues allgemeines Grundgesetz der Mechanik;Gauss;J. Reine Angew. Math.

3. On the Fundamental Formulae of Dynamics;Gibbs;Am. J. Math.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3