Imbalance Response of a Rotor Supported on Flexure Pivot Tilting Pad Journal Bearings in Series With Integral Squeeze Film Dampers

Author:

San Andre´s L.1,De Santiago O.1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

Abstract

Measurements of the imbalance responses of a massive 45 kg rotor supported on series (flexure pivot) tilting pad bearings and integral squeeze film dampers (SFDs) are presented. The rotor-bearing configuration is of interest in compressor applications where often oil lubricated dampers are introduced in series with fluid film bearings to relocate critical speeds, enhance the overall system damping, and reduce the risks of rotordynamic instabilities due to seals and impellers, for example. Coast-down experiments from 9000 rpm are conducted for increasing levels of rotor imbalance, and equivalent system damping coefficients identified from the peak amplitude of rotor response while traversing cylindrical mode critical speeds. The tests performed with locked (inactive) and active SFDs demonstrate the effectiveness of the flexible damped support in reducing the system critical speed and improving the overall rotor response with reduced transmitted forces to ground. The SFDs allow safe rotor operation with values of imbalance twice as large as the maximum sustained by the rotor supported on tilting pad bearings alone. The experiments reveal a linear relationship between the peak amplitude of vibration at the critical speeds and the imbalance displacement, even for rotor motions larger than 50% of the tilting pad bearing and damper clearances. The tests also show little cross-coupling effects with the shaft centerline moving along a nearly vertical path. The rotor-bearing system remained stable in the entire range of operation and without the appearance of subsynchronous vibration or nonlinear damper jump response.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3