Robust Thermal Design for Power Device Package Using Response Surface Method and Monte Carlo Simulation

Author:

Yokono Yasuyuki1,Hisano Katsumi1,Hirohata Kenji1

Affiliation:

1. Toshiba Corporation, Kawasaki, Kanagawa, Japan

Abstract

In the present study, the robust thermal design of a power device package was accomplished using thermal conduction calculation, design of experiment, response surface method and Monte Carlo simulation. Initially, the effects of the design parameters on the solder strain were examined in terms of the thermal expansion difference as a result of unsteady thermal conduction simulation. From the factorial effects of design parameters, the design proposals were screened. Then, robustness of the thermal resistance was evaluated for the three design proposals obtained. The thermal resistances were calculated by solving the steady thermal conduction equation under the design of experiment conditions. The solder thickness, the substrate thickness, and the cooling fin performance were considered as the fluctuation factors, assuming the error associated with manufacturing process. Using a response surface method, the values of thermal resistance were expressed as a function of the design variables. The variances of the thermal resistance were examined based on Monte Carlo simulations. Related to the cooling fin design, the Pareto line showing the trade-off relation between the fin dimension and the fan velocity was obtained. By repeating the Monte Carlo simulations, the Pareto solution was calculated so that the thermal resistances satisfy the criteria in the position of 95 percrntile of the thermal resistance variation. Under the same flow velocity conditions, the fin dimensions become about 10% higher compared to the case where the manufacturing error was not taken into account. By carrying out the thermal design following this Pareto line, even if the manufacturing error was taken into consideration, the thermal resistance could satisfy the desired value.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on Reliability of Power Devices by Finite Element Analysis;2022 23rd International Conference on Electronic Packaging Technology (ICEPT);2022-08-10

2. Reliability Evaluation on Deterioration of Power Device Using Coupled Electrical-Thermal-Mechanical Analysis;Journal of Electronic Packaging;2010-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3