Injury Tolerance and Moment Response of the Knee Joint to Combined Valgus Bending and Shear Loading

Author:

Bose Dipan1,Bhalla Kavi S.1,Untaroiu Costin D.1,Ivarsson B. Johan1,Crandall Jeff R.1,Hurwitz Shepard2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Virginia, 1101 Linden Avenue, Charlottesville, VA 22902

2. Department of Orthopeadic Surgery, University of Virginia, 1101 Linden Avenue, Charlottesville, VA 22902

Abstract

Valgus bending and shearing of the knee have been identified as primary mechanisms of injuries in a lateral loading environment applicable to pedestrian-car collisions. Previous studies have reported on the structural response of the knee joint to pure valgus bending and lateral shearing, as well as the estimated injury thresholds for the knee bending angle and shear displacement based on experimental tests. However, epidemiological studies indicate that most knee injuries are due to the combined effects of bending and shear loading. Therefore, characterization of knee stiffness for combined loading and the associated injury tolerances is necessary for developing vehicle countermeasures to mitigate pedestrian injuries. Isolated knee joint specimens (n=40) from postmortem human subjects were tested in valgus bending at a loading rate representative of a pedestrian-car impact. The effect of lateral shear force combined with the bending moment on the stiffness response and the injury tolerances of the knee was concurrently evaluated. In addition to the knee moment-angle response, the bending angle and shear displacement corresponding to the first instance of primary ligament failure were determined in each test. The failure displacements were subsequently used to estimate an injury threshold function based on a simplified analytical model of the knee. The validity of the determined injury threshold function was subsequently verified using a finite element model. Post-test necropsy of the knees indicated medial collateral ligament injury consistent with the clinical injuries observed in pedestrian victims. The moment-angle response in valgus bending was determined at quasistatic and dynamic loading rates and compared to previously published test data. The peak bending moment values scaled to an average adult male showed no significant change with variation in the superimposed shear load. An injury threshold function for the knee in terms of bending angle and shear displacement was determined by performing regression analysis on the experimental data. The threshold values of the bending angle (16.2deg) and shear displacement (25.2mm) estimated from the injury threshold function were in agreement with previously published knee injury threshold data. The continuous knee injury function expressed in terms of bending angle and shear displacement enabled injury prediction for combined loading conditions such as those observed in pedestrian-car collisions.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference21 articles.

1. Analysis of the Inter-Relationship of Pedestrian Leg and Pelvis Injuries;Edwards

2. Chidester, A. B., and Isenberg, R. A., 2001, “The Final Report—The Pedestrian Crash Data Study,” National Highway Traffic Safety Administration Paper No. 248.

3. Summary of IHRA Pedestrian Safety Work Group Activities—Proposed Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars;Mizuno

4. Factors Associated With Pelvic and Knee Injuries in Pedestrians Struck by the Fronts of Cars;Ashton

5. Knee Joint Injuries as a Reconstructive Factor in Car-to-Pedestrian Accidents;Teresinski;Forensic Sci. Int.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3