Affiliation:
1. Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325
2. Departments of Mechanical Engineering and Mathematics, University of Pittsburgh, Pittsburgh, Pa. 15261
Abstract
Solutions were developed and are shown here for the primary laminar steady flow field that occurs in an incompressible, isoviscous, Newtonian fluid which is contained between two finite parallel disks. One of the disks is made to rotate at constant velocity and the other is held stationary, and either a source or a sink is located concentric to the axis of rotation. The analysis is general, containing all terms of the Navier-Stokes equations for rotationally symmetric flows, and produces a four-parameter family of solutions. The high Reynolds number flow contains multiple cells, arranged along the radius, and the flow appears to be uniquely defined by the boundary condition and the Reynolds number.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献