Theoretical Investigation on Inflow Between Two Rotating Disks

Author:

Singh Achhaibar1

Affiliation:

1. Department of Mechanical Engineering, Amity School of Engineering and Technology, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India e-mail:

Abstract

Mathematical relations are obtained for velocities and pressure distribution for a fluid entering the peripheral clearance of a pair of rotating concentric disks that converges and discharges through an opening at the center. Both, the flows in the gap of corotating disks and in the gap of contrarotating disks can be predicted using the present analytical solutions. The prediction of instability of radial velocity for corotating disks at the speed ratio of unity is very important for practical applications. The radial velocity profile is similar to a parabolic profile exactly at speed ratio of unity. The profile drastically changes with the small difference of ±1% in the disks’ rotation. The radial convection was observed in the tangential velocity at a low radius. Centrifugal force caused by disk rotation highly influences the flow resulting in backflow on the disks. The pressure consists of friction losses and convective inertia. Therefore, the pressure decrease is high for increased speed ratio, throughflow Reynolds number, and rotational Reynolds number. The pressure decrease for the flow between contrarotating disks is lesser than that for the flow between corotating disks due to decreased viscous losses in the tangential direction. This study provides valuable guidance for the design of devices where disks are rotated independently by highlighting the instabilities in the radial velocity at the speed ratio of unity.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3