Influence of Clearance Flow on Dynamic Hydraulic Forces of Pump-Turbine during Runaway Transient Process

Author:

Hou Xiaoxia,Cheng YongguangORCID,Yang Zhiyan,Liu Ke,Zhang Xiaoxi,Liu Demin

Abstract

The clearance flow around the pump-turbine runner has significant influences on unit vibrations, which may cause accidents in transient processes. The dynamic hydraulic forces and flow patterns in the clearance flow channel (CFC) of a low specific-speed pump-turbine were analyzed based on 3D CFD simulations during the runaway oscillating process. It is shown that the axial force of the runner periodically fluctuates with large amplitudes, and its components in CFC and the main flow channel (MFC) demonstrate a similar significance level. The CFC component was formulated as a function of the clearance inlet pressure and rotational speed, while the MFC component as a function of the momentum changing rate and the runner outlet pressure force. The fluctuation of runner radial force is mainly caused by the flow evolution in MFC, however, the flow in CFC aggravates it. The pressure in CFC shows a few pulsating signals from MFC, and the radial pressure drop in CFC is proportional to the square of both radius and rotational speed. In CFC, strong rotating shear flow containing a velocity core region in the circumferential direction is formed, and rotational speed is the dominant factor.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference34 articles.

1. Energy Storage: Technology Applications and Policy Options

2. Pumped storage power stations in China: The past, the present, and the future

3. Simulation and analysis of transient process for Guangzhou pumped storage power plant A;Yao;J. Hydroelectr. Eng.,2015

4. Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations

5. The research of the abnormal water hammer phenomenon based on the unit 3 over speed test of Jiangsu Yixing pumped storage power Station;Cai;Water Power,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3