Pulsation Stability Analysis of a Prototype Pump-Turbine during Pump Mode Startup: Field Test Observations and Insights

Author:

Xia Ming1ORCID,Zhao Weiqiang2,Wang Zhengwei1ORCID,Qiao Mu3

Affiliation:

1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

2. Institute of New Energy and Energy Storage of Power China, Beijing 300134, China

3. Baishan Storage Power Station, State Grid Xinyuan Co., Ltd., Huadian 132400, China

Abstract

Pump-turbines experience complex flow phenomena and fluid–structure interactions during transient operations, which can significantly impact their stability and performance. This paper presents a comprehensive field test study of the pump mode startup process for a 150 MW prototype pump-turbine. By analyzing pressure fluctuations, structural vibrations, and their short-time Fourier transform (STFT) results, multiple stages were identified, each exhibiting distinct characteristics. These characteristics were influenced by factors such as runner rotation, free surface sloshing in the draft tube, and rotor–stator interactions. The natural frequencies of the metallic components varied during the speed-up and water-filling stages, potentially due to gyroscopic effects or stress-stiffening phenomena. The opening of the guide vanes and dewatering valve inside the guide vanes significantly altered the amplitude of the rotor–stator interaction frequency, transitioning the vibration behavior from forced to self-excited regimes. Interestingly, the draft tube pressure fluctuations exhibited sloshing frequencies that deviated from existing prediction methods. The substantial phenomena observed in this study can help researchers in the field to deepen the understanding of the complex behavior of pump-turbines during transient operations and identify more meaningful research directions.

Funder

State Grid Xinyuan Co., Ltd.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3