Design and Implementation of Hybrid Automatic Solar-Tracking System

Author:

Mohammad Nur1,Karim Tarequl2

Affiliation:

1. e-mail:

2. e-mail:  Department of Electrical & Electronic Engineering, Chittagong University of Engineering & Technology, Chittagong, 4349, Bangladesh

Abstract

A solar tracker is a system for orienting solar photovoltaic modules and solar thermal collectors toward the sun. This paper presents a microcontroller based energy efficient hybrid automatic solar-tracking system with a view to assess the improvement in solar conversion efficiency. The two-axis solar-tracking system is constructed with both hardware and software implementations. The proposed tracking system uses a new solar position sensor with adaptive features. A comparative analysis was performed using four systems, i.e., hybrid tracking, dual-axis, single-axis, and stationary module. The results showed that the use of the dual-axis tracking system produced 18% gain of power output, compared with a single-axis tracking system. The gain of output power with the hybrid tracking system was much higher (54%) when compared with a stationary system inclined at 23.5 deg to the horizontal. Considering the state of the art of the technology, successful strategy, robust control philosophy, and the potential added benefit of this research work can be employed on a large scale in sustainable manner.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. Renewable Energy Today and Tomorrow;IEEE Proc.,2001

2. Green Power: What Is It and Where Can We Find It?;IEEE Power Energy Mag.,2003

3. Sun Tracking by Peak Power Positioning for Photovoltaic Concentrator Arrays;IEEE Control Syst. Mag.,1983

4. Microprocessor Based Automatic Sun Tracker;IEEE Proc. Sci.,1991

5. Autonomous, Low-Cost, Automatic Window Covering System for Daylighting Applications;Renewable Energy,1998

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3