Heat Transfer and Fluid Dynamics Study in Solar Air Heater Employing Impinging Circular Air Jet Array for Effective Jet Stability

Author:

Chaurasiya Shailendra Kumar1,Singh Satyender1

Affiliation:

1. CFD & Heat Transfer Research Group, Department of Mechanical Engineering, Dr B R Ambedkar National Institute of Technology Jalandhar , Punjab 144011, India

Abstract

Abstract This experimental and numerical investigation is intended to increase heat transfer, reduce pumping power, and present important guidelines on the use of confined submerged air jet impingement in solar air heater designs that employ an array of circular air jets for high thermohydraulic performance. In order to increase thermohydraulic performance, a novel approach is adopted, i.e., by improving jet stability and consequently jet deflection that gives origination to four solar air heater designs for this investigation. The obtained numerical results revealed that thermohydraulic performance improves significantly by stabilizing the air jet array, which means lowering the jet deflection. The thermohydraulic performance of design-I is high compared to design-II, design-III, and design-IV, both at equal mass flow rate and Reynolds number. Moreover, design-I presents 20%, 33%, and 52% relative improvement in deviation angle of the jet core compared to design-II, design-III, and design-IV, respectively, at a minimum mass flow rate of 0.01 kg/s and Reynolds number of Re=2000, respectively. In addition, correlations to define heat transfer and fluid dynamics characteristics are established. An important guideline upon the use of solar air heater with jet impingement is that a solar air heater of short length and height (jet and plate spacing), and large width should be used for high thermohydraulic performance.

Publisher

ASME International

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3