Experimental Thermal Performance of Phase Change Material Embedded Solar Air Heater Employing Impinging Stable Air Jet Array Presenting High Power and Energy Density

Author:

Chaurasiya Shailendra Kumar12,Singh Satyender12

Affiliation:

1. Department of Mechanical Engineering, CFD & Heat Transfer Research Group , , Punjab 144011, India

2. Dr. B R Ambedkar National Institute of Technology Jalandhar , , Punjab 144011, India

Abstract

Abstract This experimental thermal performance investigation presents that the hot air at a significantly high temperature, and simultaneously at high power density and energy density of phase change material (PCM) can be obtained utilizing a novel design of PCM embedded solar air heater employing impinging stable air jet array. Investigation is carried out following two main objectives, i.e., to obtain (i) instant and (ii) long thermal backups. In the reported design configuration, impinging stable air jets on absorber plate are obtained by reducing the flow path of expelled air from upstream air jets that increased the heat transfer rate to air and consequently instant thermal backup. Although, the use of wavy PCM unit provides instant and long thermal backup by increasing heat transfer area that augments the heat transfer to air and the collection of solar radiations, respectively. Moreover, the present study is extended as follows, (i) the use of shutter on glass cover to increase thermal performance during nocturnal hours, (ii) charging of PCM till the maximum solar radiation hours and use of the stored energy during nocturnal hours, (iii) thermal performance analysis to reveal instant thermal backup, (iv) thermal performance investigation during variable weather conditions, and (v) thermal performance investigation for low ambient air temperature. The obtained results revealed that for the unit collector area, significant thermal backup of about 6 h at a temperature rise of ≥5 °C can be obtained by utilizing the above-mentioned provisions in this research.

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3