Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades

Author:

Beyhaghi Saman1,Amano Ryoichi S.2

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211 e-mail:

2. Fellow ASME Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211 e-mail:

Abstract

Improvement of the aerodynamic performance for cambered airfoils with leading-edge slots is investigated in this work. This concept is proven both computationally and experimentally in recent years. Five design variables of interest are slot's length, slot's width or thickness, inlet angle, exit angle, and the vertical position. The objective is to perform design of experiment and optimization studies on these variables and evaluate the behavior of the objective functions, namely lift and lift over drag ratio (LoD), within the appropriate ranges of the independent variables. Simulations are mainly carried out at the Reynolds number of 1.6 × 106 and the angles of attack (AoA) of 6 deg for NACA 4412 airfoil. However, some of the analyses are repeated at Reynolds number of 3.2 × 106 and AoA of 0 and 8 deg to show the scalability of the results. Results indicate that the proper selection of three of the design variables, i.e., length, inlet angle, and vertical position, can have a significant impact on both lift and LoD, while the other two variables seem less influential. For the combination of the operating conditions and the values of the design variables considered in this investigation, a LoD improvement as large as 11% is observed.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference29 articles.

1. Wind Vision: A New Era for Wind Power in the United States;United States Department of Energy,2015

2. Vindintegration i Danmark,2014

3. A Parametric Study on Leading-Edge Slots Used on Wind Turbine Airfoils at Various Angles of Attack;J. Wind Eng. Ind. Aerodyn.,2018

4. An Experimental Study of Mini-Tabs for Aerodynamic Load Control,2016

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3