Artificial Intelligence Design for Ship Structures: A Variant Multiple-Input Neural Network-Based Ship Resistance Prediction

Author:

Ao Yu12,Li Yunbo13,Gong Jiaye3,Li Shaofan2

Affiliation:

1. Harbin Engineering University College of Shipbuilding Engineering, , Harbin 150001 , China ;

2. University of California Department of Civil and Environmental Engineering, , Berkeley, CA 94720

3. Shanghai Maritime University College of Ocean Science and Engineering, , Shanghai 200135 , China

Abstract

Abstract In this work, we have developed a data-driven artificial intelligence (AI) solution to assist the ship hull design process. Specifically, we have developed and implemented an AI-based multiple-input neural network model to realize the real-time prediction of the total resistance of the ship hull structure while avoiding the inconsistent estimates from different types of design input parameters. It is demonstrated that the developed AI-based machine learning algorithm as a prediction tool can assist the ship hull design process by accurately providing the total resistance of ship hulls in real time. Moreover, we have conducted design tasks to validate the proposed method, and the validation results show that a well-trained artificial neural network model can avoid the problem of different sensitivities due to the different degrees of influence of the input parameters on the output parameter. The proposed AI-based data-driven solution provides a real-time hydrodynamic performance calculation, which can predict the hyperdynamic performances of ship hulls based on their geometry modification parameters. This approach gives a consistent prediction in terms of accuracy when facing different geometry modification parameters, and it in turn provides a fast and accurate AI-based method to assist ship hull design to achieve an optimum forecast accuracy in the entire design space, making an advance to artificial intelligence assist design in naval architecture engineering.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3