Affiliation:
1. Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, 300 Taiwan
Abstract
For motion systems with multiple axes, the approach of matched direct current gains has been generally adopted to improve contouring accuracy under low-speed operations. To achieve high-speed and high-precision motion in modern manufacturing, a perfectly matched feedback control (PMFBC) design for multiaxis motion systems is proposed in this paper. By applying stable pole-zero cancellation and including complementary zeros for uncancelled zeros for all axes, matched dynamic responses across the whole frequency range for all axes are achieved. Thus, contouring accuracy for multiaxis systems is guaranteed for the basic feedback loops. In real applications, the modeling error is unavoidable and the degradation and limitations of the model-based PMFBC exist. Therefore, a newly designed digital disturbance observer is proposed to be included in the proposed PMFBC structure for each axis to compensate for undesirable nonlinearity and disturbances to maintain the matched dynamics among all axes for the PMFBC design. Furthermore, the feedforward control loops zero phase error tracking controller are employed to reduce tracking errors. Experimental results on a three-axis CNC machining center indicate that both contouring accuracy and tracking accuracy are achieved by applying the present PMFBC design.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献