Use of ANCF Surface Geometry in the Rigid Body Contact Problems: Application to Railroad Vehicle Dynamics

Author:

Hamper Martin B.1,Wei Cheng2,Shabana Ahmed A.1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 e-mail:

2. Department of Aerospace Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China e-mail:

Abstract

In the analysis of multibody system (MBS) dynamics, contact between two arbitrary rigid bodies is a fundamental feature in a variety of models. Many procedures have been proposed to solve the rigid body contact problem, most of which belong to one of the two categories: offline and online contact search methods. This investigation will focus on the development of a contact surface model for the rigid body contact problem in the case where an online three-dimensional nonconformal contact evaluation procedure, such as the elastic contact formulation—algebraic equations (ECF-A), is used. It is shown that the contact surface must have continuity in the second-order spatial derivatives when used in conjunction with ECF-A. Many of the existing surface models rely on direct linear interpolation of profile curves, which leads to first-order spatial derivative discontinuities. This, in turn, leads to erroneous spikes in the prediction of contact forces. To this end, an absolute nodal coordinate formulation (ANCF) thin plate surface model is developed in order to ensure second-order spatial derivative continuity to satisfy the requirements of the contact formulation used. A simple example of a railroad vehicle negotiating a turnout, which includes a variable cross-section rail, is tested for the cases of the new ANCF thin plate element surface, an existing ANCF thin plate element surface with first-order spatial derivative continuity, and the direct linear profile interpolation method. A comparison of the numerical results reveals the benefits of using the new ANCF surface geometry developed in this investigation.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3