A Pseudo-Static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms

Author:

Ling Mingxiang1,Howell Larry L.2,Cao Junyi3,Jiang Zhou3

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Institute of Systems Engineering, China Academy of Engineering Physics, No.28, Mianshan road, Mianyang 621999, China e-mail:

2. Mem. ASME Department of Mechanical Engineering, Brigham Young University, 435S CTB, Provo, UT 84602 e-mail:

3. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, No.64, Xianning road, Xi'an 710049, China e-mail:

Abstract

This paper presents a pseudo-static modeling methodology for dynamic analysis of distributed compliant mechanisms to provide accurate and efficient solutions. First, a dynamic stiffness matrix of the flexible beam is deduced, which has the same definition and a similar form as the traditional static compliance/stiffness matrix but is frequency dependent. Second, the pseudo-static modeling procedure for the dynamic analysis is implemented in a statics-similar way based on D'alembert's principle. Then, all the kinematic, static and dynamic performances of compliant mechanisms can be analyzed based on the pseudo-static model. The superiority of the proposed method is that when it is used for the dynamic modeling of compliant mechanisms, the traditional dynamic modeling procedures, such as calculation of the elastic and kinetic energies as well as using Lagrange's equation, are avoided and the dynamic modeling is converted to a statics-similar problem. Comparison of the proposed method with an elastic-beam-based model in previous literature and finite element analysis for an exemplary XY precision positioning stage reveals its high accuracy and easy operation.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3