Nested and Simultaneous Solution Strategies for General Combined Plant and Control Design Problems

Author:

Herber Daniel R.1,Allison James T.1

Affiliation:

1. Industrial & Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 e-mail:

Abstract

In this paper, general combined plant and control design or co-design problems are examined. The previous work in co-design theory imposed restrictions on the type of problems that could be posed. This paper lifts many of those restrictions. The problem formulations and optimality conditions for both the simultaneous and nested solution strategies are given. Due to a number of challenges associated with the optimality conditions, practical solution considerations are discussed with a focus on the motivating reasons for using direct transcription (DT) in co-design. This paper highlights some of the key concepts in general co-design including general coupling, the differences between the feasible regions for each strategy, general boundary conditions, inequality path constraints, system-level objectives, and the complexity of the closed-form solutions. Three co-design test problems are provided. A number of research directions are proposed to further co-design theory including tailored solution methods for reducing total computational expense, better comparisons between the two solution strategies, and more realistic test problems.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference50 articles.

1. Plant-Limited Co-Design of an Energy-Efficient Counterbalanced Robotic Manipulator;ASME J. Mech. Des.,2013

2. Fathy, H. K., Papalambros, P. Y., Ulsoy, A. G., and Hrovat, D., 2003, “Nested Plant/Controller Optimization With Application to Combined Passive/Active Automotive Suspensions,” American Control Conference, Denver, CO, June 4–6, pp. 3375–3380.10.1109/ACC.2003.1244053

3. Co-Design of an Active Suspension Using Simultaneous Dynamic Optimization;ASME J. Mech. Des.,2014

4. Multidisciplinary Dynamic Optimization of Horizontal Axis Wind Turbine Design;Struct. Multidiscip. Optim.,2016

5. Integrated Control and Mechanism Design for the Variable Input-Speed Servo Four-Bar Linkages;Mechatronics,2009

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3