Turbulent Flow Through a Ducted Elbow and Plugged Tee Geometry: An Experimental and Numerical Study

Author:

Bluestein Andrew M.1,Venters Ravon1,Bohl Douglas1,Helenbrook Brian T.1,Ahmadi Goodarz1

Affiliation:

1. Mechanical and Aeronautical Engineering Department, Clarkson University, Potsdam, NY 13699-5725 e-mail:

Abstract

An experimental and computational comparison of the turbulent flow field for a sharp 90 deg elbow and plugged tee junction is presented. These are commonly used industrial geometries with the tee often retrofitted by plugging the straight exit to create an elbow. Mean and fluctuating velocities along the midplane were measured via two-dimensional (2D) particle image velocimetry (PIV), and the results were compared with the predictions of Reynolds-averaged Navier–Stokes (RANS) simulations for Reynolds numbers of 11,500 and 115,000. Major flow features of the elbow and plugged tee were compared using the mean velocity contours. Geometry effects and Reynolds number effects were studied by examining the mean and root-mean-square (RMS) fluctuating velocity profiles at six positions. Finally, the asymmetry of the flow as measured by the position of the centroid of the volumetric flux and pressure loss data were examined to quantify the streamwise evolution of the flow in the respective geometries. It was found that in both geometries there was a large recirculation zone in the downstream leg but the RANS simulations predicted an overly long recirculation which led to significantly different mean and fluctuating velocities in that region when compared to the experiments. Comparison of velocity profiles showed that both experiments and numerics agree in the fact that the turbulence intensities were greater at higher Re downstream of the vertical leg. Finally, it was shown that the plugged tee recovered its symmetry more rapidly and created less pressure loss than the elbow.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3