Effect of Engine Operating Conditions and Coolant Temperature on the Physical and Chemical Properties of Deposits From an Automotive Exhaust Gas Recirculation Cooler

Author:

Prabhakar Bhaskar,Boehman André L.1

Affiliation:

1. e-mail: Department of Energy and Mineral Engineering, EMS Energy Institute, The Pennsylvania State University, 405 Academic Activities Building, University Park, PA 16802

Abstract

The effect of engine operating conditions on exhaust gas recirculation (EGR) cooler fouling was studied using a 6.4 L V-8 common rail turbodiesel engine. An experimental setup, which included a custom-made shell and tube heat exchanger (EGR cooler) with six surrogate tubes, was designed to control flow variables independently. The engine was operated at 2150 rpm, 203 Nm and 1400 rpm, 81 Nm, representing medium and low load conditions, respectively, and the coolant to the heat exchanger was circulated at 85 °C and 40 °C. Heat exchanger effectiveness and pressure drop was monitored throughout the tests. Deposits from the EGR cooler were collected every 1.5 h for a total of 9 h, and their microstructure was analyzed using a scanning electron microscope while their chemical composition was analyzed using a pyrolysis GC-MS apparatus, and the elemental weight percentages were obtained using a CHN analyzer. The results of these analyses showed that the effectiveness of the EGR cooler drops rapidly initially and asymptotes in a few hours. The medium load condition had a higher effectiveness loss due to a greater accumulation of deposits inside the EGR cooler, mostly due to increased thermophoresis, and produced smaller and coarse particles. The low load condition had lower effectiveness loss but produced bigger particles mostly due to excess hydrocarbons. Coolant temperature played a significant role in altering the deposit microstructure and in increasing the amount of condensed hydrocarbons. More deposits were produced for the cold coolant condition, indicating that lower coolant temperature promotes greater hydrocarbon condensation and thermophoresis. These results indicate the complex nature of fouling in automotive heat exchangers.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference33 articles.

1. Health Effects of Diesel Exhaust Emissions;Eur. Respir. J.,2001

2. The Effect of Exhaust Gas Recirculation on Soot Formation in a High-Speed Direct-Injection Diesel Engine,1996

3. Relationship Between NOx and PM Emissions From DI Diesel Engine With EGR;JSAE Review,1997

4. NOx Control in Heavy-Duty Diesel Engines—What is the Limit?,1998

5. Reduction of NOx by EGR in a Compact Combustor;ASME J. Eng. Power,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3