The Interdependence of Spray Characteristics and Evaporation History of Fuel Sprays

Author:

Chin J. S.1,Durrett R.1,Lefebvre A. H.1

Affiliation:

1. The Combustion Laboratory, Thermal Sciences and Propulsion Center, School of Mechanical Engineering, Purdue University, West Lafayette, Ind. 47907

Abstract

Previously developed calculation procedures [1, 2] based on evaporation analysis are used to predict the variation of JP-5 fuel spray characteristics (mean drop diameter, Dm, and drop-size distribution parameter, n) with time during evaporation in hot air. The method takes full account of transient effects occurring during the heat-up period. The results show that both Dm and n increase with time, but the changes are more significant for sprays having small initial values of n. The time to vaporize a certain percentage of spray mass is proportional to the square of the initial mean diameter, Dmo. The effect of the initial value of n, is that a spray having a larger value of no will reach its 90 percent evaporation point faster, but a smaller value of no will give a shorter 20 percent evaporation time. Based on these calculations, a general method for estimating the time required for any liquid fuel to attain any given percentage of spray mass evaporation is proposed. Although the method was developed for quiescent mixtures of fuel drops and air, it can be applied to many practical combustion devices (for example, a gas turbine combustor fitted with airblast atomizers) where it is reasonable and sufficiently accurate to assume a low relative velocity between the fuel drops and the surrounding air or gas.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3