Smart Manufacturing Through a Framework for a Knowledge-Based Diagnosis System

Author:

Brundage Michael P.1,Kulvatunyou Boonserm1,Ademujimi Toyosi2,Rakshith Badarinath2

Affiliation:

1. National Institute of Standards and Technology, Gaithersburg, MD

2. Pennsylvania State University, State College, PA

Abstract

Various techniques are used to diagnose problems throughout all levels of the organization within the manufacturing industry. Often times, this root cause analysis is ad-hoc with no standard representation for artifacts or terminology (i.e., no standard representation for terms used in techniques such as fishbone diagrams, 5 why’s, etc.). Once a problem is diagnosed and alleviated, the results are discarded or stored locally as paper/digital text documents. When the same or similar problem reoccurs with different employees or in a different factory, the whole process has to be repeated without taking advantage of knowledge gained from previous problem(s) and corresponding solution(s). When discussing the diagnosis, personnel may miscommunicate over terms used in the root cause analysis leading to wasted time and errors. This paper presents a framework for a knowledge-based manufacturing diagnosis system that aims to alleviate these miscommunications. By learning from diagnosis methods used in manufacturing and in the medical community, this paper proposes a framework which integrates and formalizes root cause analysis by categorizing faults and failures that span multiple organizational levels. The proposed framework aims to enable manufacturing operations by leveraging machine learning and semantic technologies for the manufacturing system diagnosis. A use case for the manufacture of a bottle opener demonstrates the framework.

Publisher

American Society of Mechanical Engineers

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3