Numerical and Experimental Analysis of Solder Joint Self-Alignment in Fiber Attachment Soldering

Author:

Zhang Wei1,Wang Chunqing1,Tian Yanhong1

Affiliation:

1. Microjoining Laboratory, School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, P.R.C.

Abstract

Fiber attachment soldering is low cost and high-precision technology in direct-coupling optoelectronic packaging. For accurate alignment, it is crucial to understand the self-alignment behavior of solder joint. In this research, the self-alignment method by using surface tension of molten solder and by adopting specific pad shape was proposed. First, the self-alignment model of solder joint in fiber attachment soldering was developed by using the public domain software called SURFACE EVOLVER and the three-dimensional geometry of solder joint with different solder volume was analyzed. Then, the self-alignment behavior of solder joint with an initial yaw misalignment was discussed and the theoretical equilibrium positions of ellipse and square pad were calculated. Next, based on the minimum potential energy theorem and data from geometry simulation, the influences of design and material parameters on the standoff height (SOH) were analyzed. Furthermore, experiments were done to examine the theoretical equilibrium positions of ellipse and square pad and the SOHs of solder joints were measured by using confocal scanning laser microscope. The numerical results show that the theoretical equilibrium positions of ellipse and square pad are the major axis of ellipse and the diagonal of square, respectively. SOH can be controlled by adopting proper solder volume, which is above the critical value for specific pad. The experimental results show that the solder joint with initial yaw angle can be self-aligned to the theoretical equilibrium position of pad and solder joint with ellipse pad substrate demonstrates smaller alignment error than those with square pad substrate. The measurement results of SOH are in agreement with the simulation results.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3