Aerodynamic Shape Optimization of Turbine Blades Using a Design-Parameter-Based Shape Representation

Author:

Mengistu Temesgen1,Ghaly Wahid1,Mansour Tarek2

Affiliation:

1. Concordia University, Montre´al, QC, Canada

2. Bombardier Aerospace, St. Laurent, QC, Canada

Abstract

Currently, most shape optimization activities for 2D blade sections focus on modifying the blade shape locally to get an optimum one, which implicitly assumes that the global shape is near optimum. Moreover, the common design parameters in most cases are not the variables used in shape optimization, hence the designer does not have control over the parameters that he or she uses in the design. In this work, the turbine blade shape at any given radial location, is represented with the MRATD model (Modified Rapid Axial Turbine Design), which is a low-order representation that describes the blade profile using a maximum of 17 aerodynamic design parameters that are given (and used) by the turbine designer, e.g. the blade axial chord, stagger, maximum thickness, throat, uncovered turning, inlet and exit blade and wedge angles, LE and TE radii etc... This representation is used in an optimization scheme to sweep the design space and identify the design parameters that would accomplish a certain optimization objective (e.g. maximum adiabatic efficiency) subject to some constraints (e.g. fixed throat area or minimum TE radius or maximum TE wedge angle or metal angles etc...). The optimization scheme uses evolutionary optimization algorithm, Genetic Algorithm(GA) and, to save computing time, Artificial Neural Network (ANN) is introduced to approximate the optimization objectives and constraints; it is trained and tested using a relatively small number of high fidelity CFD flow simulations. This approach to geometry representation is used to carry out a sensitivity study of the effect of the different design parameters on the blade performance of a highly efficient subsonic turbine blade. Its impact on the design process is also demonstrated.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3