Alterations in the Geometry, Fiber Orientation, and Mechanical Behavior of the Lumbar Intervertebral Disc by Nucleus Swelling

Author:

Zhou Chaochao1,Willing Ryan2

Affiliation:

1. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000

2. Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902-6000; Department of Mechanical and Materials Engineering, Western University, Thompson Engineering Building, Room TEB 363 London, ON N6A 5B9, Canada

Abstract

Abstract Soft tissues observed in clinical medical images are often prestrained in tension by internal pressure or tissue hydration. For a native disc, nucleus swelling occurs in equilibrium with osmotic pressure induced by the high concentration of proteoglycan in the nucleus. The objective of this computational study was to investigate the effects of nucleus swelling on disc geometry, fiber orientation, and mechanical behavior by comparing those of prestrained and zero-pressure (unswelled) discs. Thermoelastic analysis techniques were repurposed in order to determine the zero-pressure disc geometry which, when pressurized, matches the prestrained disc geometry observed in clinical images. The zero-pressure geometry was then used in simulations to approximately represent a degenerated disc, which loses the ability of nucleus swelling but has not undergone distinct soft tissue remodeling/disruption. Our simulation results demonstrated that the loss of nucleus swelling caused a slight change in the disc geometry and fiber orientation, but a distinct deterioration in the resistance to intervertebral rotations including sagittal bending, lateral bending, and axial torsion. Different from rotational loading, in compression (with a displacement of 0.45 mm applied), a much larger stiffness (3.02 KN/mm) and a greater intradiscal pressure (IDP) (0.61 MPa) were measured in the zero-pressure disc, compared to the prestrained disc (1.41 KN/mm and 0.52 MPa). This computational study could be useful to understand mechanisms of disc degeneration, and guide the future design of disc tissue engineering material and biomimic disc implants.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference53 articles.

1. Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration;Spine (Phila Pa 1976),1988

2. Is the Nucleus Pulposus a Solid or a Fluid;Spine (Phila Pa 1976),1996

3. Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus;Biomech. Model. Mechanobiol.,2005

4. Micro-Structure and Mechanical Properties of Annulus Fibrous of the L4-5 and L5-S1 Intervertebral Discs;Clin. Biomech.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3