Kinematic Design of an Underactuated Robot Leg for Passive Terrain Adaptability and Stability

Author:

Kanner Oren Y.1,Dollar Aaron M.2

Affiliation:

1. e-mail:

2. Assistant Professor Mem. ASME e-mail:  Department of Mechanical Engineering, Yale University, New Haven, CT 06511

Abstract

This paper investigates how the passive adaptability of an underactuated robot leg to uneven terrain is affected by variations in design parameters. In particular, the joint torque coupling ratio, segment length ratio, and rest angles are varied to determine configurations that allow for maximum terrain roughness adaptability while minimizing the transmission of disturbance forces to the body. In addition, a series of alternate leg actuation configurations are considered. The results show that a proximal/distal joint torque coupling ratio of 2 with an inverted distal joint, a proximal/distal leg length ratio of 1.25, and an initial proximal joint angle of −53 deg maximize the terrain variability over which the robot can remain stable by exerting a near-constant vertical reaction force while minimizing lateral force and moment disturbances. In addition, the spring stiffness ratio allows for a tradeoff to be made between the different performance metrics. Finally, the robot's stability with respect to its posture is discussed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference14 articles.

1. Biomimetic Walking Robot Scorpion: Control and Modeling;Rob. Auton. Syst.,2002

2. McBride, B., Longoria, R., and Krotkov, E., 2003, “Off-Road Mobility of Small Robotic Ground Vehicles: Measuring the Performance and Intelligence of Systems,” Proceedings of the Workshop on Performance Metrics for Intelligent Systems, NIST Special Publication 1014, pp. 405–412.

3. Raibert, M., Blankespoor, K., Nelson, G., Playter, R., and Team, T. B., 2008, “Bigdog, the Rough-Terrain Quadruped Robot,” Proceedings of the International Federation of Automatic Control Congress, pp. 10822–10825.

4. Birkmeyer, P., Peterson, K., and Fearing, R. S., 2009, “Dash: A Dynamic 16g Hexapedal Robot,” Proceedings of the IEEE Intellectual Robots and Systems, pp. 2683–2689.

5. Mini-Whegs TM Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms;Int. J. Robot. Res.,2009

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3