Gas-Expanded Lubricant Performance and Effects on Rotor Stability in Turbomachinery

Author:

Weaver Brian K.1,Dimond Timothy W.2,Kaplan Jason A.3,Untaroiu Alexandrina3,Clarens Andres F.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Virginia, 351 McCormick Road, Charlottesville, VA 22904 e-mail:

2. Rotor Bearing Solutions International, LLC, 3277 Arbor Terrace, Charlottesville, VA 22911 e-mail:

3. Department of Mechanical and Aerospace Engineering, University of Virginia, 122 Engineer's Way, Charlottesville, VA 22904 e-mail:

Abstract

Gas-expanded lubricants (GELs) are tunable mixtures of synthetic oil and carbon dioxide that enable dynamic control of lubricant viscosity during bearing operation. This control can help reduce bearing power loss and operating temperatures while also providing direct control over bearing stiffness and damping, which can enhance rotordynamic performance. In this work, the bearing and rotordynamic performance of two representative high-speed machines was evaluated when different lubricants, including GELs, were supplied to the machine bearings. The machines chosen for this analysis, an eight-stage centrifugal compressor and a steam turbine-generator system, represent a wide range of speed and loading conditions encountered in modern turbomachinery. The fluids compared for machine performance were standard petroleum-based lubricants, polyol ester (POE) synthetic oils, and POE-based GELs. The performance simulations were carried out using a thermoelastohydrodynamic bearing model, which provided bearing stiffness and damping coefficients as inputs to finite element rotordynamic models. Several bearing performance metrics were evaluated including power loss, operating temperature, film thickness, eccentricity, and stiffness and damping coefficients. The rotordynamic analysis included an evaluation of rotor critical speeds, unbalance response, and stability. Bearing performance results for the compressor showed a 40% reduction in power loss at operating speed when comparing the GEL to the petroleum-based lubricant. The GEL-lubricated compressor also exhibited lower operating temperatures with minimal effects on film thickness. GELs were also predicted to produce lower bearing stiffness when compared to standard fluids in the compressor. Rotordynamic results for the compressor showed that the fluid properties had only minor effects on the unbalance response, while GELs were found to increase the stability margin by 43% when compared with standard fluids. The results from the turbine-generator system also demonstrated increases in low-speed bearing efficiency with the use of GELs, though at higher speeds the onset of turbulent flow in the GEL case offset these efficiency gains. Rotordynamic results for this system showed a contrast with the compressor results, with the GELs producing lower stability margins for a majority of the modes predicted due to increased bearing stiffness in the high-speed turbine bearings and negative stiffness in the lightly loaded, low-speed pinion bearings. These results suggest that GELs could be beneficial in providing control over a wide range of machine designs and operating conditions and that some machines are especially well suited for the tunability that these fluids impart.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3