Performance of Adaptive Lubricants in a Hybrid Journal Bearing Operating Under Fully Saturated Conditions

Author:

Chien Ssu-Ying1,Cramer M. S.2,Fu Gen1,Untaroiu Alexandrina1

Affiliation:

1. Laboratory for Turbomachinery and Components, Engineering Mechanics Program, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 e-mail:

2. Engineering Mechanics Program, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060 e-mail:

Abstract

Adaptive lubricants involve binary mixture of synthetic oil and dissolved carbon dioxide (CO2). Unlike conventional lubricant oils, the lubricant viscosity not only varies with the temperature within the bearing but also can be directly adjusted through the CO2 concentration in the system. In this study, we consider the synthetic oil to be fully saturated by CO2 to investigate the maximum impacts of adaptive lubricants on the performance of a hybrid journal bearing. The adaptive lubricant analyzed for this study was the polyalkylene glycol (PAG) oil with low concentration of CO2 (<30%). A three-dimensional (3D) computational fluid dynamic (CFD) model of the bearing was developed and validated against the experimental data. The mixture composition and the resultant mixture viscosity were calculated as a function of pressure and temperature using empirical equations. The simulation results revealed that the viscosity distribution within the PAG/CO2-lubricated bearing is determined primarily by the pressure at the low operating speed. When the speed becomes higher, it is the temperature effect that dominates the viscosity distribution within the bearing. Moreover, the PAG/CO2-lubricated bearing can reduce up to 12.8% power loss than the PAG-lubricated bearing due to the low viscosity of PAG/CO2 mixture. More importantly, we have found that the PAG/CO2 can enhance the load capacity up to 19.6% when the bearing is operating at high-speed conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3