Design Space of Foil Bearings for Closed Loop Supercritical CO2 Power Cycles Based on Three-Dimensional Thermo-Hydrodynamic Analyses

Author:

Kim Daejong1

Affiliation:

1. University of Texas at Arlington, Arlington, TX

Abstract

The closed loop Brayton cycle with super critical CO2 (S-CO2) as an operating fluid is an attractive alternative to conventional power cycles due to very high power density. Foil gas bearings using CO2 is the most promising for small S-CO2 turbomachinery but there are many problems to address; large power loss due to high flow turbulence, lack of design/analysis tool due to non-ideal gas behavior, and lack of load capacity when they are used for large systems. This paper presents high level design/analysis tool involving three-dimensional thermo-hydrodynamic analyses of radial foil bearings considering real gas effect and flow turbulence inside the film. Simulations are performed for radial foil bearing with 34.9mm in diameter lubricated with CO2 and N2 under various ambient conditions up to above 40 bar gauge pressure. The simulation results using the turbulence model still under-predict the measured data in open literature. However, the error between the prediction and measurements decreases as either speed or ambient pressure increases. In addition, general behavior of substantial increase in power loss with ambient pressure agrees with the measured data. The simulation results indicate the importance of detailed THD analysis of the foil bearings for prediction of power loss under severe turbulent condition. A conceptual layout of rotor system for 10MWe S-CO2 loop is also presented along with realistic rotor weight and bearing load. A hybrid foil bearings with diameter of 102mm is suggested for gas generator rotor, and its power losses and minimum film thicknesses at various operating conditions are presented.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3