Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Blade Leading Edge

Author:

Ravelli Silvia1,Dobrowolski Laurene2,Bogard David G.2

Affiliation:

1. University of Bergamo, Bergamo, Italy

2. The University of Texas at Austin, Austin, TX

Abstract

The main goal of this work was to evaluate the influence of impingement cooling on the cooling performance on a film cooled turbine blade leading edge. Cooling performance was quantified in terms of overall effectiveness, i.e. the normalized external surface temperature. Numerical simulations, using the commercial code FLUENT, were carried out for a leading edge model corresponding to an experimental model tested previously. The leading edge geometry consisted of three rows of holes positioned along the stagnation line and at ±25°. Three different impingement plate configurations were investigated. Two impingement plate configurations had a single row of holes along the center so that the impingement jets were directed on the stagnation line in between coolant hole entrances. These configurations had varying hole diameters such that impingement jet velocity varied by a factor of two. The third impingement plate configuration had two rows of holes with each row was placed in between the coolant hole entrances along the off stagnation lines. A configuration with no impingement plate was also investigated. For these simulations the realizable k-ε turbulence model was used. All experimental conditions were matched including the density ratio of 1.5 and blowing ratios of 1.0 and 2.0. The numerical simulations were consistent with experiments in showing that the overall effectiveness was only slightly improved by the impingement cooling. This small effect on overall effectiveness was shown to be due to conjugate effects including a reduction of convective cooling within the coolant holes when impingement cooling was used.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3