Numerical Simulation of the Flow and Heat Transfer Characteristics of Sweeping and Direct Jets on a Flat Plate with Film Holes

Author:

Kong Xiangcan,Zhang Yanfeng,Li Guoqing,Lu Xingen,Zhu Junqiang,Xu Jinliang

Abstract

The internal heat transfer performance and flow structures of a sweeping jet and film composite cooling on a flat plate were numerically studied. Sweeping jet and film composite cooling consists of a fluidic oscillator and 20 cylindrical film holes; the direct jet is formed by removing the feedback from the fluidic oscillator, which is different from the traditional cylindrical nozzle. Four different mass flow rates of coolant were considered, and the inclination angle of the film hole was 30°. The Conjugate Heat Transfer method (CHT) and Unsteady Reynolds Averaged Navier Stokes equation (URANS) were employed. The results indicated that the flow resistance coefficients of the sweeping jet were larger than those of the direct jet, and the Nusselt number monotonously increased with the increase in the mass flow rate. Compared to the direct jet, the sweeping jet had a more spatially uniform heat removal rate, and the area-averaged Nusselt number was slightly lower. Therefore, the sweeping jet and film composite cooling caused the distribution of the flat plate heat transfer to be more uniform. It is worth noting that the novel direct jet nozzle in the present work had considerable area-averaged impingement cooling effectiveness.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3