Effects of Thermal Radiation on Air Plasma Spray (APS) Coated Gas Turbine Blade

Author:

Akwaboa Stephen1,Mensah Patrick1,Diwan Ravinder1

Affiliation:

1. Southern University and A&M College, Baton Rouge, LA

Abstract

Thermal barrier coatings (TBCs) are used to protect hot gas path (HGP) components such as the first two stages of turbine blades and vanes of land-based turbine engines against high temperature environment, corrosion and oxidation. The continuing thrust towards higher thermal efficiencies of gas turbines has resulted in a continuous increase of turbine inlet temperatures (TITs). This has resulted in the increase of heat load on the turbine components especially the high pressure side of the turbine necessitating the need to protect the HGP components from the heat of the exhaust gases using novel TBCs such as air plasma spray (APS) TBCs which are transparent and reflective to radiation. This paper focuses on the combined effects of radiation and conduction heat transfer in the semitransparent yttria-stabilized zirconia (YSZ) coatings used to offer thermal protection to turbine blade. The temperature distribution in the turbine blade depends on the surface convection, reflectivity and refractive index of the grey semitransparent YSZ coatings. The temperature distributions in the metal substrate and the TBC systems are determined by solving the steady state heat diffusion equation and the radiative transport equation simultaneously using ANSYS FLUENT 12.0 CFD commercial package. Preliminary results indicate that substrate metal temperature reduction of about 100K results with the use of the TBC. This temperature drop reduces the thermally activated oxidation rate of the bond coat in the TBC and so delays failure of TBC by oxidation. Furthermore, by taking into account the effect of radiation, the temperature distribution in the metal substrate with TBC exceeds the temperature distribution without radiation by about 40 K, signifying the importance of including radiation in the thermal modeling of TBCs for high temperature applications.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3