Affiliation:
1. Post Doctoral Research Associate Mem. ASME e-mail:
2. Professor
3. Graduate Assistant
4. Professor Mechanical Engineering, Pinchback Building, Baton Rouge, LA 70813; Southern University and A&M College, Baton Rouge, LA 70813
Abstract
This paper presents a numerical solution of the hyperbolic heat conduction equation in a thermal barrier coating (TBC) structure under an imposed heat flux on the exterior of the TBC. The non-Fourier heat conduction equation is used to model the heat conduction in the TBC system that predicts the heat flux and the temperature distribution. This study presents a more realistic approach to evaluate in-service performance of thin layers of TBCs typically found in hot sections of land based and aircraft gas turbine engines. In such ultrafast heat conduction systems, the orders of magnitude of the time and space dimensions are extremely short which renders the traditional Fourier conduction law, with its implicit assumption of infinite speed of thermal propagation, inaccurate. There is, therefore, the need for an advanced modeling approach for the thermal transport phenomenon taking place in microscale systems. A hyperbolic heat conduction model can be used to predict accurately the transient temperature distribution of thermal barrier structures of turbine blades. The hyperbolic heat conduction equations are solved numerically using a new numerical scheme codenamed the mean value finite volume method (MVFVM). The numerical method yields minimal numerical dissipation and dispersion errors and captures the discontinuities such as the thermal wave front in the solution with reliable accuracy. Compared with some traditional numerical methods, the MVFVM method provides the ability to model the behavior of the single phase lag thermal wave following its reflection from domain boundary surfaces. In addition, parametric studies of properties of the substrate on the temperature and the heat flux distributions in the TBC revealed that relaxation time of the substrate material, unlike the thermal diffusivity and thermal conductivity has very little effect on the transient thermal response in the TBC. The study further showed that for thin film structures subject to short time durations of heat flux, the hyperbolic model yields more realistic results than the parabolic model.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference17 articles.
1. Akwaboa, S., Mensah, P., and Diwan, R., 2010, “Effect of Thermal Radiation on Air Plasma Spray (APS) Coated Gas Turbine Blade,” Proceedings of ASME Turbo Expo Congress and Exposition, Glasgow, UK, June14–18.
2. Electron and Phonon Thermal Conduction in Epitaxial High-Tc Superconducting Films;ASME J. Heat Transfer,1993
3. Transient Temperature During Pulsed Excimer Laser Heating of Thin Polysilicon Films Obtained by Optical Reflectivity Measurement;ASME J. Heat Transfer,1995
4. Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat;ASME J. Heat Transfer,1995
5. A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation;Acad. Sci., Paris, C. R.,1958
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献