Unsteady Rotor-Stator Interaction of a Radial-Inflow Turbine With Variable Nozzle Vanes

Author:

Kawakubo Tomoki1

Affiliation:

1. IHI Corporation, Yokohama, Japan

Abstract

For radial turbines used in automotive turbochargers, the importance of variable flow capacity by means of a variable geometry system is getting higher under the growing demands for improved engine performance and reduced engine emissions. To realize a high-performance and aeromechanically-reliable turbine stage, the unsteady flow phenomena caused by the rotor-stator interaction and their impact on the mechanical integrity must be understood deeply. In the present paper, the periodic disturbance generated by the rotor-stator interaction of a research turbine stage is investigated. The research purposes are (i) to extract the flow phenomenon which is responsible for the blade excitation, (ii) to identify the operating condition at which the influence of the extracted phenomenon becomes stronger, and (iii) to clarify how and where the disturbance energy is fed into the blades. Three dimensional unsteady stage CFD simulations are conducted to investigate the unsteady stage interaction. Two parameters are mainly focused: the nozzle vane angle and the stage pressure ratio. By changing the former, the effect of different degrees of reaction can be examined, while by changing the latter, the effect of different Mach number levels can be evaluated. The unsteady blade loading is extracted from the CFD result and coupled with the blade displacement obtained from the eigen vibratory mode analysis to examine the aeromechanical influence of the unsteady loading on the impeller blade excitation at various operating conditions. The nozzle shock wave and nozzle clearance flow are identified as the principal phenomena for the impeller blade excitation. At the mean section of the impeller blade the nozzle shock wave impinges on the S/S and diffracts on the P/S periodically, these two processes constitute high unsteady blade loading at the impeller L/E. At the shroud section the nozzle clearance flow generates high fluctuation in the relative flow direction to the impeller which results in high unsteadiness in the blade loading. These two phenomena are more important at vane closed conditions due to the higher nozzle loading. The higher the pressure ratio, the higher the normalized loading, though once the nozzle shock wave is established the normalized loading does not increase appreciably. Most of the excitation energy enters the blade at the impeller L/E at the closed condition, while it enters the blade both at the L/E and T/E at the open condition.

Publisher

ASMEDC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3