Influence of tip clearance distribution on blade vibration of vaneless radial turbine

Author:

Pan Lei1,Yang Mingyang1ORCID,Murae Shouta2,Sato Wataru2,Shimohara Naoto2,Yamagata Akihiro2

Affiliation:

1. Shanghai Jiao Tong University, Shanghai, China

2. IHI Corporation, Yokohama, Japan

Abstract

As vehicle turbochargers are developed toward higher performance and lower turbo lag, high cycle fatigue (HCF) of radial turbine blades is becoming increasingly common which greatly threatens the reliability of turbochargers. Tip leakage vortex is one of potential sources of blade excitation and it’s profoundly influenced by blade tip clearance. This paper studies the influence of tip clearance distribution on blade excitation of a vaneless radial turbine via experimentally validated one-way fluid-structure interaction (FSI) numerical method. The results suggest that blade vibration response is significantly influenced by tip clearance distribution in the meridional direction. Generalized energy method is proposed to determine the key factors for blade excitation. The results manifest that complex distributions of harmonic pressure amplitude on the blade dominate blade vibration response. Detailed flow field analysis is carried out to further investigate the mechanism of blade excitation. The results show that distributions of harmonic pressure amplitude on pressure surface (PS) and suction surface (SS) are both dominated by tip leakage vortex, whereas the roles that tip leakage vortex plays are quite different. Specifically, tip leakage vortex influences harmonic pressure amplitude on SS directly because of short distance between vortex core and SS, whereas it influences harmonic pressure amplitude on PS indirectly by interfering the evolution of passage vortex. This research can guide new designs for durable vaneless radial turbines without sacrificing aerodynamic performance.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on the Influence of Volute Throat Jet on Excitation Vibration Alleviation of Radial Turbine Blade;Journal of Turbomachinery;2024-09-03

2. Numerical Evaluation in a Scaled Rotor-Less Nozzle Vaned Radial Turbine Model under Variable Geometry Conditions;Applied Sciences;2022-07-19

3. Study on a flow-field-based meanline model of nozzled twin-entry mix-flow turbine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-06-02

4. Simulation and experimental investigation on vibration of a radial turbine wheel using a two-way FSI approach;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2022-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3