Simulations of Flow Ingestion and Related Structures in a Turbine Disk Cavity

Author:

Julien Steve1,Lefrancois Julie1,Dumas Guy1,Boutet-Blais Guillaume1,Lapointe Simon1,Caron Jean-Francois2,Marini Remo2

Affiliation:

1. Laval University, Quebec City, QC, Canada

2. Pratt & Whitney Canada, Longueuil, QC, Canada

Abstract

Preliminary results of unsteady numerical simulations of disk cavity flow in interaction with the main gaspath flow in an axial turbine are presented in this article. A large periodic sector including vanes, blades and disk cavity of approximately 74° has been used in order to allow for the formation of large scale flow structures within the cavity. Three purge flow rates have been tested, namely no purge, low purge and high purge flow rates. Energetic large scale flow structures are detected through flow visualizations for the two lowest purge flow rates. They are found to rotate at an angular velocity slightly less than the rotor speed. The presence of the large scale structures involves important pressure perturbations inside the cavity that may lead to deep mass flow ingress, whereas the unsteady vane-blade interaction seems to cause only shallow ingress. Increasing purge flow rate appears to have a stabilizing effect on the pressure fluctuations inside the cavity and to reduce the intensity of the large scale flow structures.

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3