Sensitivity analysis on the impact of geometrical and operational variations on turbine hub cavity modes and practical methods to control them

Author:

Iranidokht Vahid1,Kalfas Anestis2,Abhari Reza1,Senoo Shigeki3,Momma Kazuhiro4

Affiliation:

1. Swiss Federal Institute of Technology, Laboratory for Energy Conversion, Sonneggstrasse 3, CH-8092 Zurich, Switzerland

2. Aristotle University of Thessaloniki, Department of Mechanical Engineering, GR-54124, Thessaloniki, Greece

3. Mitsubishi Heavy Industries Ltd., 3-1-1, Saiwai, Hitachi, Ibraki, 317-8585, Japan

4. Mitsubishi Hitachi Power Systems, 3-1-1, Saiwai, Hitachi, Ibraki, 317-8585, Japan

Abstract

This paper presents an experimental investigation on the impact of different design and operational variations on the instabilities induced at the hub cavity outlet of a turbine. The experiments were conducted at the “LISA” test facility at ETH Zurich. The axial gap at the 2nd stage hub cavity exit was varied, and also three different flow deflectors were implemented at the cavity exit to control the cavity modes (CMs). Furthermore, the turbine pressure ratio was altered to mimic the off-design condition and study the sensitivity of the CMs to this parameter. Measurements were performed using pneumatic, and Fast Response Aerodynamic Probes (FRAP) at stator and rotor exit. In addition, unsteady pressure transducers were installed at the cavity exit wall to measure the characteristic parameters of the CMs. For the small axial gap, distinct and strong CMs were generated, which actively interacted with stator and rotor hub flow structures. Increasing the gap damped the fluctuations; however, a broader range of frequencies was amplified. The flow deflectors successfully suppressed the CMs by manipulating the shear layer velocity profile and blocking the growing instabilities. Eventually, the increase in the turbine pressure ratio strengthened the CMs and vice versa.

Publisher

Global Power and Propulsion Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3