Characterization of a 3D-Printed Conductive PLA Material With Electrically Controlled Stiffness

Author:

Al-Rubaiai Mohammed1,Pinto Thassyo1,Torres David1,Sepulveda Nelson1,Tan Xiaobo1

Affiliation:

1. Michigan State University, East Lansing, MI

Abstract

In this paper, we present characterization results for thermal, mechanical, and electrical properties of a 3D-printed conductive polylactic acid (PLA) composite material. The material exhibits electrically controllable stiffness, allowing for the fabrication of novel robotic and biomedical devices. In particular, an applied voltage induces a Joule heating effect, which modulates the material stiffness. Dumbbell samples are 3D-printed and loaded into a universal testing machine (UTM) to measure their Young’s moduli at different temperatures. The conductive PLA composite shows 98.6% reduction of Young’s modulus, from 1 GPa at room temperature to 13.6 MPa at 80 °C, which is fully recovered when cooled down to its initial temperature. Measurements with differential scanning calorimeter (DSC) and thermal diffusivity analyzer are conducted to investigate the thermal behavior of this material. Electrical conductivity of the material is measured under different temperatures, where the resistivity increases about 60% from 30 °C to 100 °C and hysteresis between the resistivity and the temperature is observed. These tests have shown that the conductive PLA composite has a glass transition temperature (Tg) of 56.7 °C, melting point (Tm) of 153.8 °C, and thermal conductivity of 0.366 W/(mK). The obtained results can be used as design parameters in finite element models and computational tools to rapidly simulate multi-material components for several applications such as object manipulation, grasping, and flow sensing.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3