Sustainable 4D printing of magneto-electroactive shape memory polymer composites

Author:

Lalegani Dezaki Mohammadreza,Bodaghi MahdiORCID

Abstract

AbstractTypical techniques for creating synthetic morphing structures suffer from a compromise between quick shape change and geometric complexity. A novel approach is proposed for encoding numerous shapes and forms by magneto-electroactive shape memory polymer composite (SMPC) structures and integrating sustainability with 4D printing (4DP) technology. Electrically driven, remote controllability, and quick reaction are the features of these sustainable composite structures. Low-cost 4D-printed SMPC structures can be programmed remotely at high temperatures to achieve multi-stable shapes and can snap repeatedly between all programmed temporary and permanent configurations. This allows for multiple designs in a single structure without wasting material. The strategy is based on a knowledge of SMPC mechanics, magnetic response, and the manufacturing idea underlying fused deposition modelling (FDM). Iron-filled magnetic polylactic acid (MPLA) and carbon black-filled conductive PLA (CPLA) composite materials are investigated in terms of microstructure properties, composite interface, and mechanical properties. Characterisation studies are carried out to identify how to control the structure with a low magnetic field. The shape morphing of magneto-electroactive SMPC structures is studied. FDM is used to 4D print MPLA and CPLA adaptive structures with 1D/2D-to-2D/3D shapeshifting by the magnetic field. The benefits of switchable multi-stable structures are reducing material waste and effort/energy and increasing efficiency in sectors such as packaging. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3