Characterization and Localization of Sub-Surface Structural Features Using Non-Contact Tomography

Author:

Gupta Sumit1,Loh Kenneth J.1

Affiliation:

1. University of California, San Diego, La Jolla, CA

Abstract

The main objective of this work is to develop a non-contact, non-invasive, structural health monitoring technique for surface and sub-surface damage detection in structures such as composite helicopter rotor blades. In many cases, composite structures are prone to damage in the form of cracks, delamination, and manufacturing defects, which can propagate beneath structural surfaces and cause severe component or catastrophic structural failure. The damage detection technique in this study works on the principle of electrical capacitance tomography. Different patterns of electrical field are propagated in a pre-defined sensing area. Using measurements of electrical response along boundaries of the sensing area, the permittivity distribution within that space can be reconstructed. First, a series of numerical simulations was performed by altering the electrical permittivity at different locations to simulate damage. The shapes and locations of permittivity changes were captured by the proposed technique. Second, to demonstrate its validity, an experimental test setup was built with a set of boundary electrodes. The system was connected to a function generator that supplied an electrical signal and induced electrical fields between electrodes. Capacitance between pairs of electrodes were then measured, which were used as inputs for solving the inverse permittivity reconstruction problem. Various test cases with different objects placed in the sensing area were conducted for validating this technique. The preliminary results show that the system was able to reconstruct spatial permittivity distributions and detect the presence, shapes, and locations of objects, thereby suggesting potential for damage detection.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3